
GraphAlg: Efficient Execution of User-Provided

Graph Algorithms in a Graph Database
Daan de Graaf, Robert Brijder, Soham Chakraborty, George Fletcher, Bram van de Wall, Nikolay Yakovets

Database Group

Problem: Low Programmability
If your algorithm cannot be expressed in the query language (e.g.,

Cypher), the graph database quickly becomes a dumb storage layer.

Exporting large volumes of data is expensive in terms of compute

and storage, and in the process all data statistics are lost.

Solution: GraphAlg
A language for writing graph algorithms, designed to be integrated

into graph databases.

● Fully integrated with AvantGraph. Embed algorithms into

Cypher queries.

● Eliminates data wrangling by operating inside of the database.

● Purpose-built for graph algorithms. Based on linear algebra, it

can concisely express a wide variety of algorithms.

● Highly optimizable. A small, high-level core language with

formal semantics.

CALL export.csv.all("database.csv")

func SSSP(graph: Matrix<s, s, trop_real>,

 source: Vector<s, bool>)

 -> Vector<s, trop_real> {

 v = cast<trop_real>(source);

 for i in graph.nrows {

 v += v * graph;

 }

 return v;

}

Single-Source Shortest Paths in GraphAlg.

Cross-Optimization
AvantGraph has full visibility into GraphAlg programs. The query

and any embedded algorithms are transformed into a unified IR that

is holistically optimized and executed, enabling optimizations that

cross the border between query and algorithm.

Core Language
GraphAlg can be reduced to a small core language with well-defined

operational semantics. The core language is equivalent to

MATLANG1 with a limited form of iteration. Our novel loop

construct is expressive enough to support efficient implementations

of commonly used algorithms, yet limited enough that it remains

amenable to analysis and optimization.

GraphAlg is a domain-specific language for high-performance graph

analytics. Designed to be embedded in the AvantGraph database, it

is more expressive than traditional query languages while remaining

highly amenable to optimization.

[1] Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. 2019. On the

Expressive Power of Query Languages for Matrices. ACM Trans. Database Syst.

CSV 😭

Approach Key Problems Used by

Built-in Algorithms
Library

- Fixed set of Algorithms

Pregel API - Performance issues
- Not analysable

User-defined
operators

- Unsafe
- Not analysable

Recursive CTE - Difficult to write
- Performance issues

Procedural SQL - Overhead
- Limited analysis

Algorithm DSL - Proprietary
- No integration with queries

Different approaches to graph analytics in databases.

GraphAlg compiler pipeline.

GraphAlg MATLANG +
Loops

Extended
Relational
Algebra

Simplify Transform

Algorithm

Query

Unified IR

optimize
& execute

Unified pipeline for query and algorithms.

Low programmability forces users to export data and use external tools.

